YロபJE

YJ4600

Area-Imaging Scanner

User's Guide

Disclaimer

Youjie reserves the right to make changes in specifications and other information contained in this document without prior notice, and the reader should in all cases consult Youjie to determine whether any such changes have been made. The information in this publication does not represent a commitment on the part of Youjie.
Youjie shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Youjie.
Copyright 2012-2014. All rights reserved.
Microsoft $®$ Windows $®$ is a trademark or registered trademark of Microsoft Corporation.
Other product names or marks mentioned in this document may be trademarks or registered trademarks of other companies and are the property of their respective owners.

Product Agency Compliance

Europe

C The CE marking indicates compliance with the following directives:

- 2004/108/EC EMC
- 2011/65/EU RoHS (Recast)

In addition, complies to 2006/95/EC Low Voltage Directive, when shipped with recommended power supply.

Honeywell Scanning \& Mobility Product Environmental Information

Refer to www.honeywellaidc.com/environmental for the RoHS / REACH / WEEE information.

Russia

©
Gost-R certificateThe product meets Korean agency approval for Class B equipment:

мл04

이 기기는 가정용(B급) 전자파적합기기로서 주로 가정에서 사용 하는 것을 목적으로 하며, 모든 지역에서 사용할 수 있습니다.

International

LED Safety Statement

The LED has been tested and classified as "EXEMPT RISK GROUP" to the standard: IEC 62471:2006.

CB Scheme

Certified to CB Scheme IEC 60950-1, Second Edition.

Solids and Water Protection

The Youjie 4600 has a rating of IP40, immunity of foreign particles and dripping water.

Warning

To reduce the possibility of heat-related injuries, avoid touching sections of the scanner that feel warm.

Required Safety Labels

Table of Contents

Chapter 1-Getting Started
About This Manual 1-1
Unpacking Your Device 1-1
Connecting the Device 1-1
Connecting with USB 1-1
Connecting with Keyboard Wedge 1-2
Reading Techniques 1-3
Menu Bar Code Security Settings 1-3
Setting Custom Defaults 1-4
Resetting the Custom Defaults 1-4
Chapter 2-Programming the Interface
Introduction 2-1
Programming the Interface - Plug and Play 2-1
Keyboard Wedge 2-1
Laptop Direct Connect 2-1
USB IBM SurePos 2-2
USB PC or Macintosh Keyboard 2-2
USB HID 2-3
Keyboard Country Layout 2-4
Keyboard Style 2-10
Keyboard Conversion 2-12
Control Character Output 2-12
Keyboard Modifiers 2-13
Chapter 3-Input/Output Settings
Power Up Beeper 3-1
Trigger Click 3-1
Good Read and Error Indicators 3-2
Beeper - Good Read 3-2
Beeper Volume - Good Read 3-2
Beeper Pitch - Good Read 3-3
Beeper Pitch - Error 3-3
Beeper Duration - Good Read 3-3
LED - Good Read 3-4
Number of Beeps - Good Read 3-4
Number of Beeps - Error 3-4
Good Read Delay 3-5
User-Specified Good Read Delay 3-5
Manual Trigger Mode 3-5
Presentation Mode 3-6
Presentation Sensitivity 3-6
Presentation Centering 3-6
Mobile Phone Read Mode 3-8
Hands Free Time-Out 3-9
Reread Delay 3-9
User-Specified Reread Delay 3-10
Centering 3-10
No Read. 3-12
Video Reverse 3-13
Working Orientation 3-14
Chapter 4-Data Editing
Prefix/Suffix Overview 4-1
To Add a Prefix or Suffix: 4-1
To Clear One or All Prefixes or Suffixes 4-2
To Add a Carriage Return Suffix to All Symbologies 4-3
Prefix Selections 4-3
Suffix Selections 4-4
Function Code Transmit 4-4
Intercharacter, Interfunction, and Intermessage Delays 4-4
Intercharacter Delay 4-5
User Specified Intercharacter Delay 4-5
Interfunction Delay 4-6
Intermessage Delay 4-6

Chapter 5 - Data Formatting

Data Format Editor Introduction 5-1
Add a Data Format 5-1
Other Programming Selections 5-3
Terminal ID Table 5-4
Data Format Editor Commands 5-4
Move Commands 5-5
Search Commands 5-5
Miscellaneous Commands 5-6
Data Formatter 5-7
Primary/Alternate Data Formats 5-8
Chapter 6-Symbologies
All Symbologies 6-2
Message Length Description 6-2
Codabar 6-3
Codabar Concatenation 6-4
Code 39 6-6
Full ASCII 6-8
Code 39 Code Page 6-9
Interleaved 2 of 5 6-10
NEC 2 of 5 6-11
Code 93 6-13
Code 93 Code Page 6-14
Straight 2 of 5 Industrial (three-bar start/stop) 6-15
Straight 2 of 5 IATA (two-bar start/stop) 6-16
Matrix 2 of 5 6-17
Code 128 6-18
ISBT 128 Concatenation 6-18
Code 128 Code Page 6-19
GS1-128 6-20
UPC-A 6-21
UPC-A/EAN-13
with Extended Coupon Code 6-23
Coupon GS1 DataBar Output 6-24
UPC-E0 6-24
UPC-E1 6-27
EAN/JAN-13 6-27
ISBN Translate 6-29
EAN/JAN-8 6-30
MSI 6-32
GS1 DataBar Omnidirectional 6-34
GS1 DataBar Limited 6-34
GS1 DataBar Expanded 6-35
Codablock A 6-36
Codablock F 6-37
PDF417 6-38
MacroPDF417 6-39
MicroPDF417 6-39
GS1 Composite Codes 6-40
UPC/EAN Version 6-40
GS1 Emulation 6-41
TCIF Linked Code 39 (TLC39) 6-42
QR Code 6-43
QR Code Page 6-44
Data Matrix 6-45
Data Matrix Code Page 6-46
Aztec Code 6-47
Aztec Code Page 6-48
Chinese Sensible (Han Xin) Code 6-49
Postal Codes - Linear 6-49
China Post (Hong Kong 2 of 5) 6-49
Korea Post 6-51
Chapter 7-Interface Keys
Keyboard Function Relationships 7-1
Supported Interface Keys 7-3
Chapter 8 - Utilities
To Add a Test Code I.D. Prefix to All
Symbologies 8-1
Show Decoder Revision 8-1
Show Scan Driver Revision 8-1
Show Software Revision 8-1
Show Data Format 8-2
Test Menu 8-2
EZConfig-Scanning Introduction 8-2
Resetting the Factory Defaults 8-3
Chapter 9-Product Specifications
Youjie 4600 Scanner Product Specifications 9-1
Standard Connector Pinouts 9-2
Keyboard Wedge 9-2
USB 9-2
Chapter 10-Maintenance
Repairs 10-1
Maintenance 10-1
Cleaning the Device 10-1
Inspecting Cords and Connectors 10-1
Replacing Cables 10-1
Replacing an Interface Cable 10-2
Troubleshooting a Youjie 4600 Scanner 10-2
Chapter 11-Customer Support
Technical Assistance 11-1
Appendix A - Reference Charts
Symbology Charts A-1
Linear Symbologies A-1
2D Symbologies A-3
Postal Symbologies A-3
ASCII Conversion Chart (Code Page 1252) A-4
Lower ASCII Reference Table A-5
ISO 2022/ISO 646 Character Replacements A-10
Unicode Key Maps A-13

Getting Started

About This Manual

This User's Guide provides installation and programming instructions for the Youjie 4600 area-imaging scanner. Product specifications, dimensions, warranty, and customer support information are also included.
Youjie bar code scanners are factory programmed for the most common terminal and communications settings. If you need to change these settings, programming is accomplished by scanning the bar codes in this guide.
An asterisk (*) next to an option indicates the default setting.

Unpacking Your Device

After you open the shipping carton containing the product, take the following steps:

- Check for damage during shipment. Report damage immediately to the carrier who delivered the carton.
- Make sure the items in the carton match your order.
- Save the shipping container for later storage or shipping.

Connecting the Device

Connecting with USB

A scanner can be connected to the USB port of a computer.

1. Connect the appropriate interface cable to the device first, then to the computer.

2. The scanner beeps.
3. Verify the scanner operation by scanning a bar code from the Sample Symbols in the back of this manual.

The unit defaults to a USB PC Keyboard. Refer to page 2-2 for other USB terminal settings.

Connecting with Keyboard Wedge

A scanner can be connected between the keyboard and PC as a "keyboard wedge," where the scanner provides data output that is similar to keyboard entries. The following is an example of a keyboard wedge connection:

1. Turn off power and disconnect the keyboard cable from the back of the terminal/computer.
2. Connect the appropriate interface cable to the device and to the terminal/computer.

3. Turn the terminal/computer power back on. The scanner beeps.
4. Verify the scanner operation by scanning a bar code from the Sample Symbols in the back of this manual. The scanner beeps once.

The unit defaults to an IBM PC AT and compatibles keyboard wedge interface with a USA keyboard. A carriage return (CR) suffix is added to bar code data.

Reading Techniques

The scanner has a view finder that projects a bright red aiming beam that corresponds to the scanner's horizontal field of view. The aiming beam should be centered over the bar code, but it can be positioned in any direction for a good read.

Linear bar code

The aiming beam or pattern is smaller when the scanner is closer to the code and larger when it is farther from the code. Symbologies with smaller bars or elements (mil size) should be read closer to the unit. Symbologies with larger bars or elements (mil size) should be read farther from the unit. To read single or multiple symbols (on a page or on an object), hold the scanner at an appropriate distance from the target, press the button, and center the aiming beam or pattern on the symbol. If the code being scanned is highly reflective (e.g., laminated), it may be necessary to tilt the code up 15° to 18° to prevent unwanted reflection.

Menu Bar Code Security Settings

Youjie scanners are programmed by scanning menu bar codes or by sending serial commands to the scanner. If you want to restrict the ability to scan menu codes, you can use the Menu Bar Code Security settings. Please contact the nearest technical support office (see Customer Support on page 11-1) for further information.

Setting Custom Defaults

You have the ability to create a set of menu commands as your own, custom defaults. To do so, scan the Set Custom Defaults bar code below before scannning the menu commands for your custom defaults. If a menu command requires scanning numeric codes from the back cover, then a Save code, that entire sequence will be saved to your custom defaults. When you have entered all the commands you want to save for your custom defaults, scan the Save Custom Defaults bar code.

You may have a series of custom settings and want to correct a single setting. To do so, just scan the new setting to overwrite the old one. For example, if you had previously saved the setting for Beeper Volume at Low to your custom defaults, and decide you want the beeper volume set to High, just scan the Set Custom Defaults bar code, then scan the Beeper Volume High menu code, and then Save Custom Defaults. The rest of the custom defaults will remain, but the beeper volume setting will be updated.

Resetting the Custom Defaults

If you want the custom default settings restored to your scanner, scan the Activate Custom Defaults bar code below. This is the recommended default bar code for most users. It resets the scanner to the custom default settings. If there are no custom defaults, it will reset the scanner to the factory default settings. Any settings that have not been specified through the custom defaults will be defaulted to the factory default settings.

> Activate Custom Defaults

Programming the Interface

Introduction

This chapter describes how to program your system for the desired interface.

Programming the Interface - Plug and Play

Plug and Play bar codes provide instant scanner set up for commonly used interfaces.
Note: After you scan one of the codes, power cycle the host terminal to have the interface in effect.

Keyboard Wedge

If you want your system programmed for an IBM PC AT and compatibles keyboard wedge interface with a USA keyboard, scan the bar code below. Keyboard wedge is the default interface.
Note: The following bar code also programs a carriage return (CR) suffix.

IBM PC AT and Compatibles with CR suffix

Laptop Direct Connect

For most laptops, scanning the Laptop Direct Connect bar code allows operation of the scanner in parallel with the integral keyboard. The following Laptop Direct Connect bar code also programs a carriage return (CR) suffix and turns on Emulate External Keyboard (page 2-12).

USB IBM SurePos

Scan one of the following "Plug and Play" codes to program the scanner for an IBM SurePos (USB handheld scanner) or IBM SurePos (USB tabletop scanner) interface.

Note: After scanning one of these codes, you must power cycle the cash register.

PAPSPH.
USB IBM SurePos
(USB Handheld Scanner) Interface

Each bar code above also programs the following suffixes for each symbology:

Symbology	Suffix	Symbology	Suffix
EAN 8	OC	Code 39	00 OA OB
EAN 13	16	Interleaved 2 of 5	00 OD OB
UPC A	OD	Code 128	00 18 OB
UPC E	OA	Code 39	00 OA OB

USB PC or Macintosh Keyboard

Scan one of the following codes to program the scanner for USB PC Keyboard or USB Macintosh Keyboard. Scanning these codes also adds a CR and LF.

2-2

USB HID

Scan the following code to program the scanner for USB HID bar code scanners.

Keyboard Country Layout

Scan the appropriate country code below to program the keyboard layout for your country or language. As a general rule, the following characters are supported, but need special care for countries other than the United States: @ | \$ \# \{ \} [] = / ' $\mid<>$ ~

KBDCTY33.
Bosnia

2-4

Keyboard Country (continued)

Keyboard Country (continued)

Faeroese

KBCCTY4. Germany

KBDCTYE5.
Greek (319 Latin)

Keyboard Country (continued)

Keyboard Country (continued)

KBDCTYB6.
Mongolian (Cyrillic)
 KBCDTY58.
Polish (Programmers)

Keyboard Country (continued)

Keyboard Country (continued)

KBDCTY 7. United Kingdom

Keyboard Style

This programs keyboard styles, such as Caps Lock and Shift Lock. If you have used Keyboard Conversion settings, they will override any of the following Keyboard Style settings. Default $=$ Regular.

Regular is used when you normally have the Caps Lock key off.

Caps Lock is used when you normally have the Caps Lock key on.

Shift Lock is used when you normally have the Shift Lock key on (not common to U.S. keyboards).

Automatic Caps Lock is used if you change the Caps Lock key on and off. The software tracks and reflects if you have Caps Lock on or off. This selection can only be used with systems that have an LED that notes the Caps Lock status (AT keyboards).

Autocaps via NumLock bar code should be scanned in countries (e.g., Germany, France) where the Caps Lock key cannot be used to toggle Caps Lock. The NumLock option works similarly to the regular Autocaps, but uses the NumLock key to retrieve the current state of the Caps Lock.

Autocaps via NumLock

Emulate External Keyboard should be scanned if you do not have an external keyboard (IBM AT or equivalent).

Note: After scanning the Emulate External Keyboard bar code, you must power cycle your computer.

Keyboard Conversion

Alphabetic keyboard characters can be forced to be all upper case or all lowercase. So if you have the following bar code: "abc569GK," you can make the output "ABC569GK" by scanning Convert All Characters to Upper Case, or to "abc569gk" by scanning Convert All Characters to Lower Case.

These settings override Keyboard Style selections.
Note: If your interface is a keyboard wedge, first scan the menu code for Automatic Caps Lock (page 2-11). Otherwise, your output may not be as expected.

Default $=$ Keyboard Conversion Off.

* Keyboard Conversion Off

Convert All Characters to Upper Case

Control Character Output

This selection sends a text string instead of a control character. For example, when the control character for a carriage return is expected, the output would display [CR] instead of the ASCII code of OD. Refer to ASCII Conversion Chart (Code Page 1252) on page A-4. Only codes 00 through 1F are converted (the first column of the chart).
Note: Control + ASCII Mode overrides this mode.

Default $=$ Off.

KBCNPE1.
Control Character Output On

Keyboard Modifiers

This modifies special keyboard features, such as CTRL+ ASCII codes and Turbo Mode.

Control + ASCII Mode On: The scanner sends key combinations for ASCII control characters for values 00-1F. Windows is the preferred mode. All keyboard country codes are supported. DOS mode is a legacy mode, and it does not support all keyboard country codes. New users should use the Windows mode. Refer to Keyboard Function Relationships, page 7-1 for CTRL+ ASCII Values.
Windows Mode Prefix/Suffix Off: The scanner sends key combinations for ASCII control characters for values 00-1F, but it does not translate any prefix or suffix information.

Turbo Mode: The scanner sends characters to a terminal faster. If the terminal drops characters, do not use Turbo Mode. Default = Off

Numeric Keypad Mode: Sends numeric characters as if entered from a numeric keypad. Default $=$ Off

KBCNPS1.
Numeric Keypad Mode On

* Numeric Keypad Mode Off

Automatic Direct Connect Mode: This selection can be used if you have an IBM AT style terminal and the system is dropping characters. Default = Off

Automatic Direct Connect Mode On

Input/Output Settings

Power Up Beeper

The scanner can be programmed to beep when it's powered up. Scan the Off bar code(s) if you don't want a power up beep. Default = Power Up Beeper On - Scanner.

Trigger Click

To hear an audible click every time the scanner button is pressed, scan the Trigger Click On bar code below. Scan the Trigger Click Off code if you don't wish to hear the click. (This feature has no effect on serial or automatic triggering.) Default = Trigger Click Off.

*Trigger Click Off

Good Read and Error Indicators

Beeper - Good Read

The beeper may be programmed On or Off in response to a good read. Turning this option off, only turns off the beeper response to a good read indication. All error and menu beeps are still audible. Default = Beeper Good Read On.

||| BEPBEPD.

Beeper - Good Read Off

* Beeper - Good Read On

Beeper Volume - Good Read

The beeper volume codes modify the volume of the beep the scanner emits on a good read. Default $=$ High .

Beeper Pitch - Good Read

The beeper pitch codes modify the pitch (frequency) of the beep the scanner emits on a good read. Default = Medium.

Beeper Pitch - Error
The beeper pitch codes modify the pitch (frequency) of the sound the scanner emits when there is a bad read or error. Default = Razz.

* Razz (250 Hz)

Beeper Duration - Good Read

The beeper duration codes modify the length of the beep the scanner emits on a good read. Default = Normal.

LED - Good Read

The LED indicator can be programmed On or Off in response to a good read. Default = On.

Number of Beeps - Good Read

The number of beeps of a good read can be programmed from 1-9. The same number of beeps will be applied to the beeper and LED in response to a good read. For example, if you program this option to have five beeps, there will be five beeps and five LED flashes in response to a good read. The beeps and LED flashes are in sync with one another. To change the number of beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code on the Programming Chart inside the back cover of this manual. Default $=1$.

 BEPRPT.
 Number of Good Read Beeps/LED Flashes

Number of Beeps - Error

The number of beeps and LED flashes emitted by the scanner for a bad read or error can be programmed from 1-9. For example, if you program this option to have five error beeps, there will be five error beeps and five LED flashes in response to an error. To change the number of error beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code on the Programming Chart inside the back cover of this manual. Default $=1$.

BEPERR.
Number of Error Beeps/LED Flashes

Good Read Delay

This sets the minimum amount of time before the scanner can read another bar code. Default $=0 \mathrm{~ms}$ (No Delay).

User-Specified Good Read Delay

If you want to set your own length for the good read delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save.

DLYGRD.
User-Specified Good Read Delay

Manual Trigger Mode

When in manual trigger mode, the scanner scans until a bar code is read, or until the button is released. Default = Manual Trigger-Normal.

* Manual Trigger - Normal

Presentation Mode

Presentation Mode uses ambient light to detect bar codes. The LED dims until a bar code is presented to the scanner, then the LED brightens to read the code. If the light level in the room is not high enough, Presentation Mode may not work properly.

Presentation Sensitivity

Presentation Sensitivity is a numeric range that increases or decreases the scanner's reaction time to bar code presentation. To set the sensitivity, scan the Sensitivity bar code, then scan the degree of sensitivity (from 020) from the inside back cover, and Save. 0 is the most sensitive setting, and 20 is the least sensitive. Default =1.

Sensitivity

Presentation Centering

Use Presentation Centering to narrow the scanner's field of view when it is in the stand to make sure the scanner reads only those bar codes intended by the user. For instance, if multiple codes are placed closely together, Presentation Centering will insure that only the desired codes are read.

Note: To adjust centering when the scanner is hand-held, see Centering (page 3-10).

If a bar code is not touched by a predefined window, it will not be decoded or output by the scanner. If Presentation Centering is turned on by scanning Presentation Centering On, the scanner only reads codes that pass through the centering window you specify using the Top of Presentation Centering Window, Bottom of Presentation Centering Window, Left, and Right of Presentation Centering Window bar codes.

In the example below, the white box is the centering window. The centering window has been set to 20% left, 30% right, 8% top, and 25% bottom.
Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

Note: A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Presentation Centering On, then scan one of the following bar codes to change the top, bottom, left, or right of the centering window. Then scan the percent you want to shift the centering window using digits on the inside back cover of this manual. Scan Save. Default Presentation Centering $=40 \%$ for Top and Left, 60\% for Bottom and Right.

Mobile Phone Read Mode

When this mode is selected, your scanner is optimized to read bar codes from mobile phone or other LED displays. However, the speed of scanning printed bar codes may be slightly lower when this mode is enabled.

Presentation Scanning Mobile Phone

Note: To turn off Mobil Phone Read Mode, scan the Manual Trigger Mode bar code (see page 3-5).

Hands Free Time-Out

The Scan Stand and Presentation Modes are referred to as "hands free" modes. If the scanner's button is pressed when using a hands free mode, the scanner changes to manual trigger mode. You can set the time the scanner should remain in manual trigger mode by setting the Hands Free Time-Out. Once the time-out value is reached, (if there have been no further button presses) the scanner reverts to the original hands free mode.
Scan the Hands Free Time-Out bar code, then scan the time-out duration (from 0-300,000 milliseconds) from the inside back cover, and Save. Default = $5,000 \mathrm{~ms}$.

Reread Delay

This sets the time period before the scanner can read the same bar code a second time. Setting a reread delay protects against accidental rereads of the same bar code. Longer delays are effective in minimizing accidental rereads. Use shorter delays in applications where repetitive bar code scanning is required. Reread Delay only works when in Presentation Mode (see page 3-6). Default $=$ Medium .

User-Specified Reread Delay

If you want to set your own length for the reread delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save.

Centering

Use Centering to narrow the scanner's field of view to make sure that when the scanner is hand-held, it reads only those bar codes intended by the user. For instance, if multiple codes are placed closely together, centering will insure that only the desired codes are read.
Note: To adjust centering when the scanner is in the stand, see Presentation Centering (page 3-6).

If a bar code is not touched by a predefined window, it will not be decoded or output by the scanner. If centering is turned on by scanning Centering On, the scanner only reads codes that pass through the centering window you specify using the Top of Centering Window, Bottom of Centering Window, Left, and Right of Centering Window bar codes.

In the example below, the white box is the centering window. The centering window has been set to 20% left, 30% right, 8% top, and 25% bottom. Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

Note: A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Centering On, then scan one of the following bar codes to change the top, bottom, left, or right of the centering window. Then scan the percent you want to shift the centering window using digits on the inside back cover of this manual. Scan Save. Default Centering $=40 \%$ for Top and Left, 60% for Bottom and Right.

Bottom of Centering Window

No Read

With No Read turned On, the scanner notifies you if a code cannot be read.
Default $=$ Off.

If you want a different notation than "NR," for example, "Error," or "Bad Code," you can edit the output message (see Data Formatting beginning on page 5-1). The hex code for the No Read symbol is 9C.

Video Reverse

Video Reverse is used to allow the scanner to read bar codes that are inverted. The Video Reverse Off bar code below is an example of this type of bar code. Scan Video Reverse Only to read only inverted bar codes. Scan Video Reverse and Standard Bar Codes to read both types of codes.
Note: After scanning Video Reverse Only, menu bar codes cannot be read. You must scan Video Reverse Off or Video Reverse and Standard Bar Codes in order to read menu bar codes.

Note: Images downloaded from the unit are not reversed. This is a setting for decoding only.

* Video Reverse Off

Working Orientation

Some bar codes are direction-sensitive. For example, KIX codes and OCR can misread when scanned sideways or upside down. Use the working orientation settings if your direction-sensitive codes will not usually be presented upright to the scanner. Default = Upright.

Upright:

Vertical, Top to Bottom: (Rotate CW 90 ${ }^{\circ}$)

Upside Down:

Default = Upright.

ROTATNO.

* Upright

ROTATN2.
Upside Down

Data Editing

Prefix/Suffix Overview

When a bar code is scanned, additional information is sent to the host computer along with the bar code data. This group of bar code data and additional, user-defined data is called a "message string." The selections in this section are used to build the user-defined data into the message string.
Prefix and Suffix characters are data characters that can be sent before and after scanned data. You can specify if they should be sent with all symbologies, or only with specific symbologies. The following illustration shows the breakdown of a message string:

Points to Keep In Mind

- It is not necessary to build a message string. The selections in this chapter are only used if you wish to alter the default settings. Default prefix $=$ None. Default suffix $=$ None.
- A prefix or suffix may be added or cleared from one symbology or all symbologies.
- You can add any prefix or suffix from the ASCII Conversion Chart (Code Page 1252), beginning on page A-4, plus Code I.D. and AIM I.D.
- You can string together several entries for several symbologies at one time.
- Enter prefixes and suffixes in the order in which you want them to appear on the output.
- When setting up for specific symbologies (as opposed to all symbologies), the specific symbology ID value counts as an added prefix or suffix character.
- The maximum size of a prefix or suffix configuration is 200 characters, which includes header information.

To Add a Prefix or Suffix:

Step 1. Scan the Add Prefix or Add Suffix symbol (page 4-3).
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for the
symbology to which you want to apply the prefix or suffix. For example, for Code 128, Code ID is "j" and Hex ID is " 6 A".
Step 3. Scan the 2 hex digits from the Programming Chart inside the back cover of this manual or scan 9,9 for all symbologies.
Step 4. Determine the hex value from the ASCII Conversion Chart (Code Page 1252), beginning on page A-4, for the prefix or suffix you wish to enter.
Step 5. Scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.

Step 6. Repeat Steps 4 and 5 for every prefix or suffix character.
Step 7. To add the Code I.D., scan 5, C, 8, 0.
To add AIM I.D., scan 5, C, 8, 1 .
To add a backslash (), scan 5, C, 5, C.
Note: To add a backslash (1) as in Step 7, you must scan 5C twice - once to create the leading backslash and then to create the backslash itself.

Step 8. Scan Save to exit and save, or scan Discard to exit without saving.
Repeat Steps 1-6 to add a prefix or suffix for another symbology.

Example: Add a Suffix to a specific symbology

To send a CR (carriage return)Suffix for U.P.C. only:

Step 1. Scan Add Suffix.

Step 2. Determine the 2 digit hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for U.P.C..

Step 3. Scan 6, 3 from the Programming Chart inside the back cover of this manual.
Step 4. Determine the hex value from the ASCII Conversion Chart (Code Page 1252), beginning on page A-4, for the CR (carriage return).
Step 5. Scan 0, D from the Programming Chart inside the back cover of this manual.

Step 6. Scan Save, or scan Discard to exit without saving.

To Clear One or All Prefixes or Suffixes

You can clear a single prefix or suffix, or clear all prefixes/suffixes for a symbology. If you have been entering prefixes and suffixes for single symbologies, you can use Clear One Prefix (Suffix) to delete a specific character from a symbology. When you Clear All Prefixes (Suffixes), all the prefixes or suffixes for a symbology are deleted.

Step 1. Scan the Clear One Prefix or Clear One Suffix symbol.
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for the symbology from which you want to clear the prefix or suffix.
Step 3. Scan the 2 digit hex value from the Programming Chart inside the back cover of this manual or scan 9, 9 for all symbologies.

Your change is automatically saved.

To Add a Carriage Return Suffix to All Symbologies

Scan the following bar code if you wish to add a carriage return suffix to all symbologies at once. This action first clears all current suffixes, then programs a carriage return suffix for all symbologies.

Function Code Transmit

When this selection is enabled and function codes are contained within the scanned data, the scanner transmits the function code to the terminal. Charts of these function codes are provided in Supported Interface Keys starting on page 7-3. When the scanner is in keyboard wedge mode, the scan code is converted to a key code before it is transmitted. Default = Enable.

Intercharacter, Interfunction, and Intermessage Delays

Some terminals drop information (characters) if data comes through too quickly. Intercharacter, interfunction, and intermessage delays slow the transmission of data, increasing data integrity.

Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each character of scanned data.
Scan the Intercharacter Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intercharacter Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.
Note: Intercharacter delays are not supported in USB serial emulation.

User Specified Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed after the transmission of a particular character of scanned data. Scan the Delay Length bar code below, then scan the number of 5ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

Next, scan the Character to Trigger Delay bar code, then the 2-digit hex value for the ASCII character that will trigger the delay ASCII Conversion Chart (Code Page 1252), beginning on page A-4.

Character to Tr rigger Delay
To remove this delay, scan the Delay Length bar code, and set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Interfunction Delay

An interfunction delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each segment of the message string. Scan the Interfunction Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Interfunction Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Intermessage Delay

An intermessage delay of up to 5000 milliseconds (in 5ms increments) may be placed between each scan transmission. Scan the Intermessage Delay bar code below, then scan the number of 5ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intermessage Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Data Formatting

Data Format Editor Introduction

You may use the Data Format Editor to change the scanner's output. For example, you can use the Data Format Editor to insert characters at certain points in bar code data as it is scanned. The selections in the following pages are used only if you wish to alter the output. Default Data Format setting = None.
Normally, when you scan a bar code, it gets outputted automatically; however when you create a format, you must use a "send" command (see Send Commands on page 5-4) within the format program to output data.

Multiple formats may be programmed into the scanner. They are stacked in the order in which they are entered. However, the following list presents the order in which formats are applied:

1. Specific Terminal ID, Actual Code ID, Actual Length
2. Specific Terminal ID, Actual Code ID, Universal Length
3. Specific Terminal ID, Universal Code ID, Actual Length
4. Specific Terminal ID, Universal Code ID, Universal Length
5. Universal Terminal ID, Actual Code ID, Actual Length
6. Universal Terminal ID, Actual Code ID, Universal Length
7. Universal Terminal ID, Universal Code ID, Actual Length
8. Universal Terminal ID, Universal Code ID, Universal Length

The maximum size of a data format configuration is 2000 bytes, which includes header information.
If you have changed data format settings, and wish to clear all formats and return to the factory defaults, scan the Default Data Format code below.

Add a Data Format

Step 1. Scan the Enter Data Format symbol (page 5-2).
Step 2. Select Primary/Alternate Format
Determine if this will be your primary data format, or one of 3 alternate formats. This allows you to save a total of 4 different data formats. To program your primary format, scan 0 using the Programming Chart inside the back cover of this manual. If you are programming an alternate format, scan 1, 2, or 3, depending on which alternate format
you are programming. (See Primary/Alternate Data Formats on page 5-8 for further information.)

Step 3. Terminal Type

Refer to Terminal ID Table (page 5-4) and locate the Terminal ID number for your PC. Scan three numeric bar codes on the inside back cover to program the scanner for your terminal ID (you must enter 3 digits). For example, scan 003 for an AT wedge.
Note: The wildcard for all terminal types is 099.

Step 4. Code I.D.

In the Symbology Charts, beginning on page A-1, find the symbology to which you want to apply the data format. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.
Note: If you are creating a data format for Batch Mode Quantity, use 35 for the Code I.D.

Step 5. Length

Specify what length (up to 9999 characters) of data will be acceptable for this symbology. Scan the four digit data length from the Programming Chart inside the back cover of this manual. (Note: 50 characters is entered as 0050 . 9999 is a universal number, indicating all lengths.)

Step 6. Editor Commands

Refer to Data Format Editor Commands (page 5-4). Scan the symbols that represent the command you want to enter.
Step 7. Scan Save to save your data format, or Discard to exit without saving your changes.

5-2

Other Programming Selections

Clear One Data Format

This deletes one data format for one symbology. If you are clearing the primary format, scan 0 from the Programming Chart inside the back cover of this manual. If you are clearing an alternate format, scan $\mathbf{1 , 2}$, or 3, depending on the format you are clearing. Scan the Terminal Type and Code I.D. (see Symbology Charts on page A-1), and the bar code data length for the specific data format that you want to delete. All other formats remain unaffected.

Clear all Data Formats

This clears all data formats.
Save to exit and save your data format changes.
Discard to exit without saving any data format changes.

Terminal ID Table

Terminal	Model(s)	$\underline{\text { Terminal }}$
	PC/AT and compatibles	$\underline{\mathbf{I D}}$
	USB SurePOS Handheld	1203
	Scanner	
	USB SurePOS Tabletop	129
Scanner	124	
	PC Keyboard	125
	Mac Keyboard	134
	Japanese Keyboard (PC)	131
	HID POS	

Data Format Editor Commands

Send Commands

Send all characters

F1 Include in the output message all of the characters from the input message, starting from current cursor position, followed by an insert character. Syntax = F1xx where xx stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Send a number of characters

F2 Include in the output message a number of characters followed by an insert character. Start from the current cursor position and continue for "nn" characters or through the last character in the input message, followed by character "xx." Syntax = F2nnxx where nn stands for the numeric value (00-99) for the number of characters, and $x x$ stands for the the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Send all characters up to a particular character

F3 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search character "ss," followed by an insert character. The cursor is moved forward to the "ss" character. Syntax = F3ssxx where ss stands for the search character's hex value for its ASCII code, and xx stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Send all but the last characters

E9 Include in the output message all but the last "nn" characters, starting from the current cursor position. The cursor is moved forward to one position past the last input message character included. Syntax $=$ E9nn where nn stands for the numeric value (00-99) for the number of characters that will not be sent at the end of the message.

Insert a character multiple times

F4 Send "xx" character "nn" times in the output message, leaving the cursor in the current position. Syntax $=F 4 x x n n$ where $x x$ stands for the insert character's hex value for its ASCII code, and nn is the numeric value (00-99) for the number of times it should be sent.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Move Commands

Move the cursor forward a number of characters

F5 Move the cursor ahead "nn" characters from current cursor position. Syntax $=F 5 n n$ where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved ahead.
Move the cursor backward a number of characters
F6 Move the cursor back "nn" characters from current cursor position. Syntax = F6nn where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved back.

Move the cursor to the beginning

F7 Move the cursor to the first character in the input message. Syntax = F7.

Move the cursor to the end

EA Move the cursor to the last character in the input message. Syntax = $E A$.

Search Commands

Search forward for a character

F8 Search the input message forward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax $=$ F8xx where $x x$ stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Search backward for a character

F9 Search the input message backward for " x "" character from the current cursor position, leaving the cursor pointing to the "xx" character.
Syntax = F9xx where $x x$ stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Search forward for a non-matching character

E6 Search the input message forward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax $=E 6 x x$ where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Search backward for a non-matching character

E7 Search the input message backward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non"xx" character. Syntax $=E 7 x x$ where $x x$ stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Miscellaneous Commands

Suppress characters

FB Suppress all occurrences of up to 15 different characters, starting at the current cursor position, as the cursor is advanced by other commands. When the FC command is encountered, the suppress function is terminated. The cursor is not moved by the FB command.
Syntax = FBnnxxyy . .zz where nn is a count of the number of suppressed characters in the list, and xxyy .. zz is the list of characters to be suppressed.

Stop suppressing characters

FC Disables suppress filter and clear all suppressed characters. Syntax = FC.

Replace characters

E4 Replaces up to 15 characters in the output message, without moving the cursor. Replacement continues until the E5 command is encountered. Syntax $=E 4 n n x x_{1} x x_{2} y y_{1} y y_{2} \ldots z z_{1} z z_{2}$ where $n n$ is the total count of of the number of characters in the list (characters to be replaced plus replacement characters); xx_{1} defines characters to be replaced and xx_{2} defines replacement characters, continuing through z_{1} and z_{2}.

Stop replacing characters

E5 Terminates character replacement. Syntax $=$ E5.

Compare characters

FE Compare the character in the current cursor position to the character "xx." If characters are equal, move the cursor forward one position.
Syntax = FExx where xx stands for the comparison character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-4 for decimal, hex and character codes.

Check for a number

EC Check to make sure there is an ASCII number at the current cursor position. The format is aborted if the character is not numeric.

Check for non-numeric character

ED Check to make sure there is a non-numeric ASCII character at the current cursor position. The format is aborted if the character is numeric.

Insert a delay

EF Inserts a delay of up to 49,995 milliseconds (in multiples of 5), starting from the current cursor position. Syntax = EFnnnn where nnnn stands for the delay in 5 ms increments, up to 9999 . This command can only be used with keyboard emulation.

Data Formatter

When Data Formatter is turned Off, the bar code data is output to the host as read, including prefixes and suffixes.

You may wish to require the data to conform to a data format you have created and saved. The following settings can be applied to your data format:

Data Formatter On, Not Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted.

Data Format Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted. Any data that does not match your data format requirements generates an error tone and the data in that bar code is not transmitted.

Default = Data Formatter On, Not Required, Keep Prefix/Suffix.

DFMEN2.
Data Format Required, Keep Prefix/Suffix

Primary/Alternate Data Formats

You can save up to four data formats, and switch between these formats. Your primary data format is saved under $\mathbf{0}$. Your other three formats are saved under 1, 2, and 3. To set your device to use one of these formats, scan one of the bar codes below.

Symbologies

This programming section contains the following menu selections.

- All Symbologies
- Aztec Code
- China Post (Hong Kong 2 of 5)
- Chinese Sensible (Han Xin) Code
- Codabar
- Codablock A
- Codablock F
- Code 128
- Code 39
- Code 93
- Data Matrix
- EAN/JAN-13
- EAN/JAN-8
- GS1 Composite Codes
- GS1 DataBar Expanded
- GS1 DataBar Limited
- GS1 DataBar Omnidirectional
- GS1 Emulation
- GS1-128
- Interleaved 2 of 5
- Korea Post
- Matrix 2 of 5
- MicroPDF417
- MSI
- NEC 2 of 5
- Postal Codes - Linear
- PDF417
- GS1 DataBar Omnidirectional
- QR Code
- Straight 2 of 5 IATA (two-bar start/ stop)
- Straight 2 of 5 Industrial (three-bar start/stop)
- TCIF Linked Code 39 (TLC39)
- UPC-A
- UPC-A/EAN-13 with Extended Coupon Code
- UPC-E0
- UPC-E1

All Symbologies

If you want to decode all the symbologies allowable for your scanner, scan the All Symbologies On code. If on the other hand, you want to decode only a particular symbology, scan All Symbologies Off followed by the On symbol for that particular symbology.

Note: When All Symbologies On is scanned, 2D Postal Codes are not enabled. 2D Postal Codes must be enabled separately.

Message Length Description

You are able to set the valid reading length of some of the bar code symbologies. If the data length of the scanned bar code doesn't match the valid reading length, the scanner will issue an error tone. You may wish to set the same value for minimum and maximum length to force the scanner to read fixed length bar code data. This helps reduce the chances of a misread.
EXAMPLE: Decode only those bar codes with a count of 9-20 characters. Min. length $=09 \mathrm{Max}$. length $=20$
EXAMPLE: Decode only those bar codes with a count of 15 characters. Min. length $=15 \mathrm{Max}$. length $=15$
For a value other than the minimum and maximum message length defaults, scan the bar codes included in the explanation of the symbology, then scan the digit value of the message length and Save bar codes on the Programming Chart inside the back cover of this manual. The minimum and maximum lengths and the defaults are included with the respective symbologies.

Codabar

<Default All Codabar Settings>

 CBRDFT.

Codabar On/Off

Codabar Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/Stop characters. Default $=$ Don't Transmit.

Codabar Check Character

Codabar check characters are created using different "modulos." You can program the scanner to read only Codabar bar codes with Modulo 16 check characters. Default = No Check Character.
No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate and Transmit, the scanner will only read Codabar bar codes printed with a check character, and will transmit this character at the end of the scanned data.

When Check Character is set to Validate, but Don't Transmit, the unit will only read Codabar bar codes printed with a check character, but will not transmit the check character with the scanned data.

Codabar Concatenation

Codabar supports symbol concatenation. When you enable concatenation, the scanner looks for a Codabar symbol having a " D " start character, adjacent to a symbol having a "D" stop character. In this case the two messages are concatenated into one with the "D" characters omitted.

Select Require to prevent the scanner from decoding a single "D" Codabar symbol without its companion. This selection has no effect on Codabar symbols without Stop/Start D characters.

Codabar Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=2-60$. Minimum Default $=4$, Maximum Default $=60$.

Code 39

< Default All Code 39 Settings >

 Cg9DFT.

Code 39 On/Off

Code 39 Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/Stop characters. Default = Don't Transmit.

c395Sx1.
Transmit

03955×0.

* Don't Transmit

Code 39 Check Character

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate, but Don't Transmit, the unit only reads Code 39 bar codes printed with a check character, but will not transmit the check character with the scanned data.

When Check Character is set to Validate and Transmit, the scanner only reads Code 39 bar codes printed with a check character, and will transmit this character at the end of the scanned data. Default = No Check Character.

C 39 CK 0.

* No Check Character

G3CK21.
Validate, but Don't Transmit

C390K22.
Validate and Transmit

Code 39 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=0-48$. Minimum Default $=0$, Maximum Default $=48$.

$69 \mathrm{M} \| \mathrm{N}$.
Minimum Message Length

Code 39 Append

This function allows the scanner to append the data from several Code 39 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 39 bar code with the append trigger char-
acter(s), it buffers Code 39 bar codes until it reads a Code 39 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default = Off.

Full ASCII

If Full ASCII Code 39 decoding is enabled, certain character pairs within the bar code symbol will be interpreted as a single character. For example: \$V will be decoded as the ASCII character SYN, and /C will be decoded as the ASCII character \#. Default = Off.

NUL \%U	DLE \$P	SP	SPACE	0	0	@	\%V	P	P		\%W	p	+P
SOH \$A	DC1 \$Q	!	/A	1	1	A	A	Q	Q	a	+A	q	+Q
STX \$B	DC2 \$R	"	/B	2	2	B	B	R	R	b	+B	r	+R
ETX \$C	DC3 \$S	\#	/C	3	3	C	C	S	S	c	+C	S	+S
EOT \$D	DC4 \$T	\$	/D	4	4	D	D	T	T	d	+D	t	+T
ENQ \$E	NAK \$U	\%	/E	5	5	E	E	U	U	e	+E	u	+U
ACK \$F	SYN \$V	\&	/F	6	6	F	F	V	V	f	+F	v	+V
BEL \$G	ETB \$W		/G	7	7	G	G	W	W	g	+G	w	+W
BS \$H	CAN \$X	(/H	8	8	H	H	X	X	h	+H	x	+X
HT \$	EM \$Y)	/I	9	9	I	1	Y	Y	i	+1	y	+Y
LF \$J	SUB \$Z		/J		/Z	J	J	Z	Z	j	+J	z	+Z
VT \$K	ESC \%A	+	/K		\%F	K	K	[\%K	k	+K	\{	\%P
FF \$L	FS \%B		/L	<	\%G	L	L	\backslash	\%L	1	+L	I	\%Q
CR \$M	GS \%C	-	-	$=$	\%H	M	M]	\%M	m	+M	\}	\%R
SO \$N	RS \%D		.	>	\%	N	N	\wedge	\%N	n	$+\mathrm{N}$	~	\%S
SI \$O	US \%E	/	/O	?	\%J	0	0	-	\%O	\bigcirc	+O		\%T

Character pairs / M and $/ \mathrm{N}$ decode as a minus sign and period respectively. Character pairs /P through /Y decode as 0 through 9.

Code 39 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A10), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Interleaved 2 of 5

< Default All Interleaved 2 of 5 Settings >

 225DFT.

Interleaved 2 of 5 On/Off

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.

When Check Digit is set to Validate, but Don't Transmit, the unit only reads Interleaved 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads Interleaved 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default = No Check Digit.

Interleaved 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

125 MAX Maximum Message Length

NEC 2 of 5

< Default All NEC 2 of 5 Settings >

 N25DFT.

NEC 2 of 5 On/Off

 N25ENA.
 * On

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.

When Check Digit is set to Validate, but Don't Transmit, the unit only reads NEC 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.

When Check Digit is set to Validate and Transmit, the scanner only reads NEC 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default = No Check Digit.

N 25 C

* No Check Digit

$\mathrm{N} 25 \mathrm{C}+1$
Validate, but Don't Transmit

N 25 CK 2
Validate and Transmit

NEC 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Code 93

< Default All Code 93 Settings >

Code 93 On/Off

Code 93 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

$\mathrm{cg} 3 \mathrm{M} / \mathrm{N}$.
Minimum Message Length

Code 93 Append

This function allows the scanner to append the data from several Code 93 bar codes together before transmitting them to the host computer. When this function is enabled, the scanner stores those Code 93 bar codes that start with a space (excluding the start and stop symbols), and does not immediately transmit the data. The scanner stores the data in the order in
which the bar codes are read, deleting the first space from each. The scanner transmits the appended data when it reads a Code 93 bar code that starts with a character other than a space. Default = Off.

Code 93 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A10), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

C93DCP.
Code 93 Code Page

Straight 2 of 5 Industrial (three-bar start/stop)

<Default All Straight 2 of 5 Industrial Settings>

Straight 2 of 5 Industrial On/Off

R25ENA1.
On

Straight 2 of 5 Industrial Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Straight 2 of 5 IATA (two-bar start/stop)

<Default All Straight 2 of 5 IATA Settings>

 425 DFT .

Straight 2 of 5 IATA On/Off

Straight 2 of 5 IATA Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Matrix 2 of 5

<Default All Matrix 2 of 5 Settings>

Matrix 2 of 5 On/Off

X25ENA. 1.
On

Matrix 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Code 128

<Default All Code 128 Settings>

Code 128 On/Off

ISBT 128 Concatenation

In 1994 the International Society of Blood Transfusion (ISBT) ratified a standard for communicating critical blood information in a uniform manner. The use of ISBT formats requires a paid license. The ISBT 128 Application Specification describes 1) the critical data elements for labeling blood products, 2) the current recommendation to use Code 128 due to its high degree of security and its space-efficient design, 3) a variation of Code 128 that supports concatenation of neighboring symbols, and 4) the standard layout for bar codes on a blood product label. Use the bar codes below to turn concatenation on or off. Default $=$ Off.

Code 128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

Code 128 Append

This function allows the scanner to append the data from several Code 128 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 128 bar code with the append trigger character(s), it buffers Code 128 bar codes until it reads a Code 128 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default $=$ Off.

Code 128 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A10), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

GS1-128

<Default All GS1-128 Settings> |||

GS1-128 On/Off

 GS1ENA.
 * On

GS1-128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=1$, Maximum Default $=80$.

Minimum Message Length

UPC-A

<Default All UPC-A Settings>

 UPADFT.

UPC-A On/Off

Note: When UPC-A Off is scanned, UPC-A bar codes are transmitted as EAN13.

UPC-A Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPC-A Number System

The numeric system digit of a U.P.C. symbol is normally transmitted at the beginning of the scanned data, but the unit can be programmed so it will not transmit it. Default $=$ On.

UPC-A Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-A data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPAAD20.

* 2 Digit Addenda Off

UPAAD51.
5 Digit Addenda On

UРAAD50.

* 5 Digit Addenda Off

UPC-A Addenda Required

When Required is scanned, the scanner will only read UPC-A bar codes that have addenda. You must then turn on a 2 or 5 digit addenda listed on page 6-22. Default $=$ Not Required .

UPAARO1.
Required

UPC-A Addenda Separator

When this feature is on, there is a space between the data from the bar code and the data from the addenda. When turned off, there is no space. Default $=$ On.

Off

UPC-A/EAN-13

with Extended Coupon Code

Use the following codes to enable or disable UPC-A and EAN-13 with Extended Coupon Code. When left on the default setting (Off), the scanner treats Coupon Codes and Extended Coupon Codes as single bar codes.
If you scan the Allow Concatenation code, when the scanner sees the coupon code and the extended coupon code in a single scan, it transmits both as separate symbologies. Otherwise, it transmits the first coupon code it reads.
If you scan the Require Concatenation code, the scanner must see and read the coupon code and extended coupon code in a single read to transmit the data. No data is output unless both codes are read.

Default = Off.

Coupon GS1 DataBar Output

If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. Scan the GS1 Output On code below to scan and output only the GS1 DataBar code data. Default = GS1 Output Off.

UPC-EO

<Default All UPC-E Settings>

UPC-EO On/Off

Most U.P.C. bar codes lead with the 0 number system. To read these codes, use the UPC-E0 On selection. If you need to read codes that lead with the 1 number system, use UPC-E1 (page 6-27). Default = On.

UPEEND1.

* UPC-EO On

UPC-EO Expand

UPC-E Expand expands the UPC-E code to the 12 digit, UPC-A format. Default = Off.

|||
 UPEEXP1.
 On

UPEEXPI.

* Off

UPC-EO Addenda Required

When Required is scanned, the scanner will only read UPC-E bar codes that have addenda. Default $=$ Not Required.

||||1||||||||||||||||||||
 UPEARQ1.
 Required

UPC-EO Addenda Separator

When this feature is On, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

UPC-EO Check Digit

Check Digit specifies whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPECKM1.

* On

Off

UPC-EO Number System

The numeric system digit of a U.P.C. symbol is normally transmitted at the beginning of the scanned data, but the unit can be programmed so it will not transmit it. To prevent transmission, scan Off. Default $=$ On.

UPENSX1.

* On

Off

UPC-EO Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-E data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPEAD21.
2 Digit Addenda On

UPEAD51.
5 Digit Addenda On

UPEAD20.

* 2 Digit Addenda Off

UPEADSO.

* 5 Digit Addenda Off

UPC-E1

Most U.P.C. bar codes lead with the 0 number system. For these codes, use UPC-E0 (page 6-24). If you need to read codes that lead with the 1 number system, use the UPC-E1 On selection. Default = Off.

UPEEN11.
UPC-E1 On

EAN/JAN-13
<Default All EAN/JAN Settings>

EAN/JAN-13 On/Off

Note: If you want to convert UPC-A bar codes to EAN-13 format, scan the UPCA Off bar code on page 6-21.

EAN/JAN-13 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-13 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-13 data. Default = Off for both 2 Digit and 5 Digit Addenda.

E13AD21.
2 Digit Addenda On

* 5 Digit Addenda Off

EAN/JAN-13 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-13 bar codes that have addenda. Default $=$ Not Required.

Required

* Not Required

EAN/JAN-13 Addenda Separator

When this feature is On, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

Note: If you want to enable or disable EAN13 with Extended Coupon Code, refer to UPC-A/EAN-13 with Extended Coupon Code (page 6-23).

ISBN Translate

When On is scanned, EAN-13 Bookland symbols are translated into their equivalent ISBN number format. Default $=$ Off.

EAN/JAN-8

<Default All EAN/JAN-8 Settings>

 EABDFT.

EAN/JAN-8 On/Off

EAN/JAN-8 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EABCK 1.

* On

EAN/JAN-8 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-8 data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

EAN/JAN-8 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-8 bar codes that have addenda. Default $=$ Not Required.

EAN/JAN-8 Addenda Separator

When this feature is On, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

MSI

<Default All MSI Settings> $|||\mid$ MSIDFT.

MSI On/Off

MSIENA. 1.

On

MSI Check Character

Different types of check characters are used with MSI bar codes. You can program the scanner to read MSI bar codes with Type 10 check characters. Default = Validate Type 10, but Don't Transmit.

When Check Character is set to Validate Type 10/11 and Transmit, the scanner will only read MSI bar codes printed with the specified type check character(s), and will transmit the character(s) at the end of the scanned data.

When Check Character is set to Validate Type 10/11, but Don't Transmit, the unit will only read MSI bar codes printed with the specified type check character(s), but will not transmit the check character(s) with the scanned data.

* Validate Type 10, but Don't Transmit

Validate 2 Type 10 Characters and Transmit

Validate Type 11 then Type 10 Character, but Don't Transmit

MSI Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=4-48$. Minimum Default $=4$, Maximum Default $=48$.

$\mathrm{MS}\|\mathrm{M}\|$.
Minimum Message Length

Maximum Message Length

GS1 DataBar Omnidirectional

< Default All GS1 DataBar Omnidirectional Settings >

GS1 DataBar Omnidirectional On/Off

GS1 DataBar Limited

< Default All GS1 DataBar Limited Settings >

GS1 DataBar Limited On/Off

GS1 DataBar Expanded

< Default All GS1 DataBar Expanded Settings >

GS1 DataBar Expanded On/Off

GS1 DataBar Expanded Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=4-74$. Minimum Default $=4$, Maximum Default $=74$.

Codablock A

<Default All Codablock A Settings>

 CBADFT.

Codablock A On/Off

Codablock A Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-600$. Minimum Default $=1$, Maximum Default $=600$.

Codablock F

<Default All Codablock F Settings>

 CBFDFT.

Codablock F On/Off

Codablock F Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-2048$. Minimum Default $=1$, Maximum Default $=2048$.

PDF417

< Default All PDF417 Settings >

 PDFDFT.

PDF417 On/Off

 PDFENA1.
 * On

PDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-2750$. Minimum Default $=1$, Maximum Default $=2750$.

PDFMIN.
Minimum Message Length

MacroPDF417

MacroPDF417 is an implementation of PDF417 capable of encoding very large amounts of data into multiple PDF417 bar codes. When this selection is enabled, these multiple bar codes are assembled into a single data string. Default $=$ On.

MicroPDF417

< Default All MicroPDF417 Settings >

MPDDFT.

MicroPDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-366$. Minimum Default $=1$, Maximum Default $=366$.

GS1 Composite Codes

Linear codes are combined with a unique 2D composite component to form a new class called GS1 Composite symbology. GS1 Composite symbologies allow for the co-existence of symbologies already in use. Default $=$ Off.

UPC/EAN Version

Scan the UPC/EAN Version On bar code to decode GS1 Composite symbols that have a U.P.C. or an EAN linear component. (This does not affect GS1 Composite symbols with a GS1-128 or GS1 linear component.) Default $=$ UPC/EAN Version Off.

Note: If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. See Coupon GS1 DataBar Output (page 6-24) for further information.

GS1 Composite Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-2435$. Minimum Default $=1$, Maximum Default $=2435$.

GS1 Emulation

The scanner can automatically format the output from any GS1 data carrier to emulate what would be encoded in an equivalent GS1-128 or GS1 DataBar symbol. GS1 data carriers include UPC-A and UPC-E, EAN-13 and EAN-8, ITF-14, GS1-128, and GS1-128 DataBar and GS1 Composites. (Any application that accepts GS1 data can be simplified since it only needs to recognize one data carrier type.)
If GS1-128 Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If GS1 DataBar Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-DataBar AIM ID,]em (see Symbology Charts on page A-1).
If GS1 Code Expansion Off is scanned, retail code expansion is disabled, and UPC-E expansion is controlled by the UPC-E0 Expand (page 6-25) setting. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If EAN8 to EAN13 Conversion is scanned, all EAN8 bar codes are converted to EAN13 format.

Default = GS1 Emulation Off.

EANEMU1.
GS1-128 Emulation

EANEMUO.

* GS1 Emulation Off

TCIF Linked Code 39 (TLC39)

This code is a composite code since it has a Code 39 linear component and a MicroPDF417 stacked code component. All bar code readers are capable of reading the Code 39 linear component. The MicroPDF417 component can only be decoded if TLC39 On is selected. The linear component may be decoded as Code 39 even if TLC39 is off. Default $=$ Off.

QR Code

< Default All QR Code Settings >

 QRCDFT.

QR Code On/Off

This selection applies to both QR Code and Micro QR Code.

QR Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-7089$. Minimum Default $=1$, Maximum Default $=7089$.

QRCMAX
Maximum Message Length

QR Code Append

This function allows the scanner to append the data from several QR Code bar codes together before transmitting them to the host computer. When the scanner encounters an QR Code bar code with the append trigger character(s), it buffers the number of QR Code bar codes determined by
information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

QR Code Page

QR Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A10), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Data Matrix

< Default All Data Matrix Settings >

 IDMDFT.

Data Matrix On/Off

 IDMENA.
 * On

Off

Data Matrix Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-3116$. Minimum Default $=1$, Maximum Default $=3116$.

$|\mathrm{DM} / \mathrm{M}| \mathbb{N}$.
Minimum Message Length

Data Matrix Append

This function allows the scanner to append the data from several Data Matrix bar codes together before transmitting them to the host computer. When the scanner encounters an Data Matrix bar code with the append trigger character(s), it buffers the number of Data Matrix bar codes deter-
mined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default = On.

Off

Data Matrix Code Page

Data Matrix Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page $A-10$), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Aztec Code

< Default All Aztec Code Settings > $|||\mid$

Aztec Code On/Off

Aztec Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-3832$. Minimum Default $=1$, Maximum Default $=3832$.

Aztec Append

This function allows the scanner to append the data from several Aztec bar codes together before transmitting them to the host computer. When the scanner encounters an Aztec bar code with the append trigger charac-
ter(s), it buffers the number of Aztec bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ Off.

Aztec Code Page

Aztec Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A10), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Chinese Sensible (Han Xin) Code

< Default All Han Xin Settings >

 HX_DFT.

Han Xin Code On/Off

Han Xin Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=1-7833$. Minimum Default $=1$, Maximum Default $=7833$.

Postal Codes - Linear

The following lists linear postal codes. Any combination of linear postal code selections can be active at a time.

China Post (Hong Kong 2 of 5)

<Default All China Post (Hong Kong 2 of 5) Settings>

China Post (Hong Kong 2 of 5) On/Off

China Post (Hong Kong 2 of 5) Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Korea Post

<Default All Korea Post Settings>

Korea Post

KPCENA.
On

Korea Post Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-2) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=48$.

Korea Post Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data. Default = Don't Transmit.

Interface Keys

Keyboard Function Relationships

The following Keyboard Function Code, Hex/ASCII Value, and Full ASCII "CTRL"+ relationships apply to all terminals that can be used with the scanner. Refer to page 2-13 enable Control + ASCII mode.

Function Code	HEX/ASCII Value	Full ASCII "CTRL" +
NUL	00	@
SOH	01	A
STX	02	B
ETX	03	C
EOT	04	D
ENQ	05	E
ACK	06	F
BEL	07	G
BS	08	H
HT	09	1
LF	0A	J
VT	OB	K
FF	OC	L
CR	OD	M
SO	OE	N
SI	OF	0
DLE	10	P
DC1	11	Q
DC2	12	R
DC3	13	S
DC4	14	T
NAK	15	U
SYN	16	V
ETB	17	W
CAN	18	X
EM	19	Y
SUB	1A	Z
ESC	1B	[
FS	1 C	1
GS	1D]
RS	1E	\wedge
US	1F	-

The last five characters in the Full ASCII "CTRL"+ column ([]] 6 -), apply to US only. The following chart indicates the equivalents of these five characters for different countries.

Country			Codes		
United States	[1]	6	-
Belgium	[<]	6	-
Scandinavia	8	<	9	6	-
France	\wedge	8	\$	6	=
Germany		Ã	+	6	-
Italy		1	+	6	-
Switzerland		<		6	-
United Kingdom	[¢]	6	-
Denmark	8	1	9	6	-
Norway	8	1	9	6	-
Spain	[1]	6	-

Supported Interface Keys

ASCII	HEX	IBM PC/AT and Compatibles, USB PC Keyboard	Apple Mac/iMac Supported Keys
NUL	00	Reserved	Reserved
SOH	01	Enter (KP)	Enter/Numpad Enter
STX	02	Cap Lock	CAPS
ETX	03	ALT make	ALT make
EOT	04	ALT break	ALT break
ENQ	05	CTRL make	CNTRL make
ACK	06	CTRL break	CNTRL break
BEL	07	CR/Enter	RETURN
BS	08	Reserved	APPLE make
HT	09	Tab	TAB
LF	OA	Reserved	APPLE break
VT	OB	Tab	TAB
FF	OC	Delete	Del
CR	OD	CR/Enter	RETURN
SO	OE	Insert	Ins Help
SI	OF	Escape	ESC
DLE	10	F11	F11
DC1	11	Home	Home
DC2	12	Print	Prnt Scrn
DC3	13	Back Space	BACKSPACE
DC4	14	Back Tab	LSHIFT TAB
NAK	15	F12	F12
SYN	16	F1	F1
ETB	17	F2	F2
CAN	18	F3	F3
EM	19	F4	F4
SUB	1A	F5	F5
ESC	1B	F6	F6
FS	1 C	F7	F7
GS	1D	F8	F8
RS	1E	F9	F9
US	1F	F10	F10
DEL	7F		BACKSPACE

Utilities

To Add a Test Code I.D. Prefix to All Symbologies

This selection allows you to turn on transmission of a Code I.D. before the decoded symbology. (See the Symbology Charts, beginning on page A-1) for the single character code that identifies each symbology.) This action first clears all current prefixes, then programs a Code I.D. prefix for all symbologies. This is a temporary setting that will be removed when the unit is power cycled.

Add Code I.D. Prefix to All Symbologies (Temporary)

Show Decoder Revision

Scan the bar code below to output the decoder revision.

Show Scan Driver Revision

Scan the bar code below to output the scan driver revision. The scan driver controls image capture.

Show Software Revision

Scan the bar code below to output the current software revision, unit serial number, and other product information.

Show Data Format

Scan the bar code below to show current data format settings.

Test Menu

When you scan the Test Menu On code, then scan a programming code in this manual, the scanner displays the content of a programming code. The programming function will still occur, but in addition, the content of that programming code is output to the terminal.
Note: This feature should not be used during normal scanner operation.

EZConfig-Scanning Introduction

EZConfig-Scanning provides a wide range of PC-based programming functions that can be performed on a scanner connected to your PC's COM port. EZCon-fig-Scanning allows you to download upgrades to the scanner's firmware, change programmed parameters, and create and print programming bar codes. Using EZConfig-Scanning, you can even save/open the programming parameters for a scanner. This saved file can be e-mailed or, if required, you can create a single bar code that contains all the customized programming parameters and mail or fax that bar code to any location. Users in other locations can scan the bar code to load in the customized programming.

To communicate with a scanner, EZConfig-Scanning requires that the PC have at least one available serial communication port, or a serial port emulation using a physical USB port. If you are using the serial port and RS232 cable, an external power supply is required. When using a USB serial port emulation, only a USB cable is required.

EZConfig-Scanning Operations

The EZConfig-Scanning software performs the following operations:

8-2

Scan Data

Scan Data allows you to scan bar codes and display the bar code data in a window. Scan Data lets you send serial commands to the scanner and receive scanner response that can be seen in the Scan Data window. The data displayed in the Scan Data window can either be saved in a file or printed.

Configure

Configure displays the programming and configuration data of the scanner. The scanner's programming and configuration data is grouped into different categories. Each category is displayed as a tree item under the "Configure" tree node in the application explorer. When one of these tree nodes is clicked, the right-hand side is loaded with the parameters' form belonging to that particular category. The "Configure" tree option has all the programming and configuration parameters specified for a scanner. You can set or modify these parameters as required. You can later write the modified settings to the scanner, or save them to a dcf file.

Resetting the Factory Defaults

This selection erases all your settings and resets the scanner to the original factory defaults. It also disables all plugins.

If you aren't sure what programming options are in your scanner, or you've changed some options and want to restore the scanner to factory default settings, first scan the Remove Custom Defaults bar code, then scan Activate Defaults. This resets the scanner to the factory default settings.

Product Specifications

Youjie 4600 Scanner Product Specifications

Parameter	Specification
Mechanical	
Height	2.9 inches (75mm)
Length	6.7 inches (170 mm)
Width	2.6 inches (66 mm)
Weight	4.2 ounces (119g)
Electrical	
Input Voltage	4 to 5.5VDC
Operating Power	2W; 400 mA (typical) @ 5V
Standby Power	.45W; 90 mA (typical) @ 5V
Environmental	
Operating Temperature	$32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
Storage Temperature	$-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Humidity	5 to 95% non-condensing
Drop	Operational after 12 drops to concrete from 2 ft . (1m)
Environmental Sealing	IP40
Light Levels	0-100,000 lux (direct sunlight)
ESD	$\pm 4 \mathrm{kv}$ direct discharge $\pm 8 \mathrm{kv}$ air discharge
Motion Tolerance	100mm per second for 13 mil UPC
Scan Performance	
Pitch, Skew	$60^{\circ}, 70^{\circ}$
Symbol Contrast	35\%
DOF with 5 mil, 1D bar code	
Typical Performance 5 mil Code 39	33-95mm (1.3-3.7 in.)
13 mil UPC-A	32-255mm (1.3-10 in.)
20 mil Code 39	35-355mm (1.4-14 in.)
6.7 mil PDF417	$30-95 \mathrm{~mm}$ (1.2-3.7 in.)
10 mil Data Matrix	$30-100 \mathrm{~mm}$ (1.2-3.9 in.)
15 mil Data Matrix	21-162mm (0.8-6.4 in.)
20mil QR Code	23-200mm (0.9-7.9 in.)

Standard Connector Pinouts

Note: The following pin assignments are not compatible with legacy products. Use of a cable with improper pin assignments may lead to damage to the unit. Use of any cables not provided by the manufacturer may result in damage not covered by your warranty.

Keyboard Wedge

10 Pin RJ46 Modular Plug

USB

Note: 10 Pin Modular Plug

Maintenance

Repairs

Repairs and/or upgrades are not to be performed on this product. These services are to be performed only by an authorized service center (see Customer Support on page 11-1).

Maintenance

Your device provides reliable and efficient operation with a minimum of care. Although specific maintenance is not required, the following periodic checks ensure dependable operation:

Cleaning the Device

Reading performance may degrade if the scanner's window is not clean. If the window is visibly dirty, or if the scanner isn't operating well, clean the window with a soft cloth or lens tissue dampened with water (or a mild detergent- water solution). If a detergent solution is used, rinse with a clean lens tissue dampened with water only.

The scanner and base's housing may also be cleaned the same way.

! Caution:

Do not submerge the scanner in water. The scanner's housing is not watertight.

Do not use abrasive wipes or tissues on the scanner's window - abrasive wipes may scratch the window. Never use solvents (e.g., alcohol or acetone) on the housing or window - solvents may damage the finish or the window.

Inspecting Cords and Connectors

Inspect the interface cable and connector for wear or other signs of damage. A badly worn cable or damaged connector may interfere with scanner operation. Contact your distributor for information about cable replacement. Cable replacement instructions are on page 10-1.

Replacing Cables

The standard interface cable is attached to the scanner with an 10-pin modular connector. When properly seated, the connector is held in the scanner's handle by a flexible retention tab. The interface cable is designed to be field replaceable.

- Order replacement cables from Youjie or from an authorized distributor.
- When ordering a replacement cable, specify the cable part number of the original interface cable.

Replacing an Interface Cable

1. Turn the power to the host system OFF.
2. Disconnect the scanner's cable from the terminal or computer.
3. Locate the small hole on the back of the scanner's handle. This is the cable release.
4. Straighten one end of a paper clip.
5. Insert the end of the paper clip into the small hole and press in. This depresses the retention tab, releasing the connector. Pull the connector out while maintaining pressure on the paper clip, then remove the paper clip.

6. Replace with the new cable. Insert the connector into the opening and press firmly. The connector is keyed to go in only one way, and will click into place.

Troubleshooting a Youjie 4600 Scanner

The scanner automatically performs self-tests whenever you turn it on. If your scanner is not functioning properly, review the following Troubleshooting Guide to try to isolate the problem.
Is the power on? Is the aimer on?
If the aimer isn't illuminated, check that:

- The cable is connected properly.
- The host system power is on (if external power isn't used).
- The button works.

Is the scanner having trouble reading your symbols?

If the scanner isn't reading symbols well, check that the scanner window is clean and that the symbols:

- Aren't smeared, rough, scratched, or exhibiting voids.
- Aren't coated with frost or water droplets on the surface.
- Are enabled in the scanner or in the decoder to which the scanner connects.
Is the bar code displayed but not entered?
The bar code is displayed on the host device correctly, but you still have to press a key to enter it (the Enter/Return key or the Tab key, for example).
- You need to program a suffix. Programming a suffix enables the scanner to output the bar code data plus the key you need (such as "CR") to enter the data into your application. Refer to Prefix/Suffix Overview beginning on page 4-1 for further information.

Does the scanner read the bar code incorrectly?

If the scanner reads a bar code, but the data is not displayed correctly on the host screen:

- The scanner may not be programmed for the appropriate terminal interface.
For example, you scan "12345" and the host displays "@es\%."
Reprogram the scanner with the correct Plug and Play bar code. See Programming the Interface beginning on page 2-1.
- The scanner may not be programmed to output your bar code data properly.
For example, you scan "12345" and the host displays "A12345B."
Reprogram the scanner with the proper symbology selections. See Chapter 6.

The scanner won't read your bar code at all.

- Scan the sample bar codes in the back of this manual. If the scanner reads the sample bar codes, check that your bar code is readable. Verify that your bar code symbology is enabled (see Chapter 6).

If the scanner still can't read the sample bar codes, scan All Symbologies (page 6-2).
If you aren't sure what programming options have been set in the scanner, or if you want the factory default settings restored, refer to Resetting the Custom Defaults on page 1-4.

Customer Support

Technical Assistance

Contact information for technical support, product service, and repair can be found at www.youjieaidc.com.

Limited Warranty

Youjie warrants its products to be free from defects in materials and workmanship and to conform to Youjie's published specifications applicable to the products purchased at the time of shipment. This warranty does not cover any Youjie product which is (i) improperly installed or used; (ii) damaged by accident or negligence, including failure to follow the proper maintenance, service, and cleaning schedule; or (iii) damaged as a result of (A) modification or alteration by the purchaser or other party, (B) excessive voltage or current supplied to or drawn from the interface connections, (C) static electricity or electro-static discharge, (D) operation under conditions beyond the specified operating parameters, or (E) repair or service of the product by anyone other than Youjie or its authorized representatives.

This warranty shall extend from the time of shipment for the duration published by Youjie for the product at the time of purchase ("Warranty Period"). Any defective product must be returned (at purchaser's expense) during the Warranty Period to Youjie factory or authorized service center for inspection. No product will be accepted by Youjie without a Return Materials Authorization, which may be obtained by contacting Youjie. In the event that the product is returned to Youjie or its authorized service center within the Warranty Period and Youjie determines to its satisfaction that the product is defective due to defects in materials or workmanship, Youjie, at its sole option, will either repair or replace the product without charge, except for return shipping to Youjie.

[^0]NOT ALLOW THE EXCLUSION OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.
All provisions of this Limited Warranty are separate and severable, which means that if any provision is held invalid and unenforceable, such determination shall not affect the validity of enforceability of the other provisions hereof. Use of any peripherals not provided by the manufacturer may result in damage not covered by this warranty. This includes but is not limited to: cables, power supplies, cradles, and docking stations. Youjie extends these warranties only to the first end-users of the products. These warranties are non-transferable.
The duration of the limited warranty for the Youjie 4600 scanner is ninety (90)days.

Reference Charts

Symbology Charts

Note: "m" represents the AIM modifier character. Refer to International Technical Specification, Symbology Identifiers, for AIM modifier character details.

Prefix/Suffix entries for specific symbologies override the universal (All Symbologies, 99) entry.

Refer to Data Editing beginning on page 4-1 and Data Formatting beginning on page 5-1 for information about using Code ID and AIM ID.

Linear Symbologies

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Codabar]Fm	0-1	a	61
Code 11]H3		h	68
Code 128]Cm	0, 1, 2, 4	j	6A
Code 32 Pharmaceutical (PARAF)]X0		<	3C
Code 39 (supports Full ASCII mode)]Am	$0,1,3,4,5,7$	b	62
TCIF Linked Code 39 (TLC39)]L2		T	54
Code 93 and 93i]Gm	$\begin{aligned} & \text { 0-9, A-Z, } \\ & \text { a-m } \end{aligned}$	i	69
EAN]Em	0, 1, 3, 4	d	64
EAN-13 (including Bookland EAN)]E0		d	64
EAN-13 with Add-On]E3		d	64
EAN-13 with Extended Coupon Code]E3		d	64
EAN-8]E4		D	44
EAN-8 with Add-On]E3		D	44

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
GS1				
GS1 DataBar]em	0	y	79
GS1 DataBar Limited]em		\{	7B
GS1 DataBar Expanded]em		\}	7D
GS1-128]C1		1	49
2 of 5				
China Post (Hong Kong 2 of 5)]X0		Q	51
Interleaved 2 of 5] $1 m$	0, 1, 3	e	65
Matrix 2 of 5]X0		m	6D
NEC 2 of 5]X0		Y	59
Straight 2 of 5 IATA]Rm	0, 1, 3	f	66
Straight 2 of 5 Industrial]S0		f	66
MSI]Mm	0,1	g	67
Telepen]Bm		t	74
UPC		$\begin{aligned} & 0,1,2,3,8 \\ & 9, A, B, C \end{aligned}$		
UPC-A]E0		c	63
UPC-A with Add-On]E3		C	63
UPC-A with Extended Coupon Code]E3		C	63
UPC-E]E0		E	45
UPC-E with Add-On]E3		E	45
UPC-E1]X0		E	45

Add Honeywell Code ID				5 C80
Add AIM Code ID				5 C81
Add Backslash				5 C5C
Batch mode quantity			5	35

2D Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Aztec Code]zm	0-9, A-C	z	7A
Chinese Sensible Code (Han Xin Code)]X0		H	48
Codablock A	106	0, 1, 4, 5, 6	V	56
Codablock F]Om	0, 1, 4, 5, 6	q	71
Code 49]Tm	0, 1, 2, 4	I	6C
Data Matrix]dm	0-6	w	77
GS1]em	0-3	y	79
GS1 Composite]em	0-3	y	79
GS1 DataBar Omnidirectional]em	0-3	y	79
MaxiCode] \cup m	0-3	X	78
PDF417]Lm	0-2	r	72
MicroPDF417]Lm	0-5	R	52
QR Code]Qm	0-6	S	73
Micro QR Code]Qm		S	73

Postal Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
				99
Australian Post	JX0		A	41
British Post]X0		B	42
Canadian Post	JX0		C	43

Symbology	AlM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
	JX0		Q	51
InfoMail	JX0		,	2c
Intelligent Mail Bar Code	JX0		M	4 D
Japanese Post	JX0		J	4 A
KIX (Netherlands) Post	JX0		K	4 B
Korea Post	JX0		$?$	3 F
Planet Code	JX0		L	4 C
Postal-4i	JX0		N	4 E
Postnet	JX0		P	50

ASCII Conversion Chart (Code Page 1252)

In keyboard applications, ASCII Control Characters can be represented in 3 different ways, as shown below. The CTRL+X function is OS and application dependent. The following table lists some commonly used Microsoft functionality. This table applies to U.S. style keyboards. Certain characters may differ depending on your Country Code/PC regional settings.

Non-printable ASCII control characters		Keyboard Control + ASCII (CTRL+X) Mode			
				Windows Mode Control + X Mode On (KBDCAS2)	
DEC	HEX	Char	Control + X Mode Off (KBDCAS0)	CTRL + X	CTRL + X function
0	00	NUL	Reserved	CTRL+ @	
1	01	SOH	NP Enter	CTRL+ A	Select all
2	02	STX	Caps Lock	CTRL+ B	Bold
3	03	ETX	ALT Make	CTRL+ C	Copy
4	04	EOT	ALT Break	CTRL+ D	Bookmark
5	05	ENQ	CTRL Make	CTRL+ E	Center
6	06	ACK	CTRL Break	CTRL+ F	Find
7	07	BEL	Enter / Ret	CTRL+ G	
8	08	BS	(Apple Make)	CTRL+ H	History
9	09	HT	Tab	CTRL+ I	Italic
10	$0 A$	LF	(Apple Break)	CTRL+ J	Justify

A-4

Non-printable ASCII control characters			Keyboard Control + ASCII (CTRL+X) Mode		
			Control + X Mode Off (KBDCAS0)	Windows Mode Control + X Mode On (KBDCAS2)	
DEC	HEX	Char		CTRL + X	$\longdiv { \text { CTRL + X } }$ function
11	0B	VT	Tab	CTRL+ K	hyperlink
12	0 C	FF	Delete	CTRL+ L	$\begin{array}{\|l\|} \hline \text { list, } \\ \text { left align } \end{array}$
13	OD	CR	Enter / Ret	CTRL+ M	
14	0E	SO	Insert	CTRL+ N	New
15	0F	SI	ESC	CTRL+ O	Open
16	10	DLE	F11	CTRL+ P	Print
17	11	DC1	Home	CTRL+ Q	Quit
18	12	DC2	PrtScn	CTRL+ R	
19	13	DC3	Backspace	CTRL+S	Save
20	14	DC4	Back Tab	CTRL+ T	
21	15	NAK	F12	CTRL+ U	
22	16	SYN	F1	CTRL+ V	Paste
23	17	ETB	F2	CTRL+ W	
24	18	CAN	F3	CTRL+ X	
25	19	EM	F4	CTRL+Y	
26	1A	SUB	F5	CTRL+ Z	
27	1B	ESC	F6	CTRL+ [
28	1C	FS	F7	CTRL+ 1	
29	1D	GS	F8	CTRL+]	
30	1E	RS	F9	CTRL+^	
31	1F	US	F10	CTRL+ -	
127	7F	\bigcirc	NP Enter		

Lower ASCII Reference Table

Note: Windows Code page 1252 and lower ASCII use the same characters.

Printable Characters									
DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character	
32	20	<SPACE>	64	40	$@$	96	60	`	
33	21	$!$	65	41	A	97	61	a	
34	22	$"$	66	42	B	98	62	b	
35	23	$\#$	67	43	C	99	63	c	

Printable Characters (Continued)								
DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character
36	24	\$	68	44	D	100	64	d
37	25	\%	69	45	E	101	65	e
38	26	\&	70	46	F	102	66	f
39	27	'	71	47	G	103	67	g
40	28	(72	48	H	104	68	h
41	29)	73	49	I	105	69	i
42	2A	*	74	4A	J	106	6A	j
43	2B	+	75	4B	K	107	6B	k
44	2C	,	76	4C	L	108	6C	I
45	2D	-	77	4D	M	109	6D	m
46	2E	.	78	4E	N	110	6E	n
47	2F	1	79	4F	O	111	6F	0
48	30	0	80	50	P	112	70	p
49	31	1	81	51	Q	113	71	q
50	32	2	82	52	R	114	72	r
51	33	3	83	53	S	115	73	s
52	34	4	84	54	T	116	74	t
53	35	5	85	55	U	117	75	u
54	36	6	86	56	V	118	76	v
55	37	7	87	57	W	119	77	w
56	38	8	88	58	X	120	78	x
57	39	9	89	59	Y	121	79	y
58	3A	:	90	5A	Z	122	7 A	z
59	3B	;	91	5B	[123	7 B	\{
60	3C	<	92	5C	1	124	7 C	\|
61	3D	$=$	93	5D]	125	7D	\}
62	3E	>	94	5E	\wedge	126	7E	\sim
63	3F	?	95	5F	-	127	7F	\bigcirc

Extended ASCII Characters

DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
128	80	$€$	Ç	up arrow \uparrow	0×48
129	81		ü	down arrow \downarrow	0×50
130	82	,	é	right arrow \rightarrow	$0 \times 4 B$
131	83	f	â	left arrow \longleftarrow	$0 \times 4 D$
132	84	$„$	ä	Insert	0×52
133	85	\ldots	à	Delete	0×53

A-6

Extended ASCII Characters (Continued)					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
134	86	\dagger	å	Home	0x47
135	87	\ddagger	ç	End	0x4F
136	88	,	ê	Page Up	0x49
137	89	\%	ë	Page Down	0x51
138	8A	Š	è	Right ALT	0x38
139	8B	く	ï	Right CTRL	0x1D
140	8C	OE	î	Reserved	n/a
141	8D		ì	Reserved	n/a
142	8E	Ž	Ä	Numeric Keypad Enter	0x1C
143	8F		Å	Numeric Keypad /	0x35
144	90		É	F1	0x3B
145	91	،	æ	F2	0x3C
146	92	,	\nVdash	F3	0x3D
147	93	"	ô	F4	0x3E
148	94	"	ö	F5	0x3F
149	95	-	ò	F6	0x40
150	96	-	û	F7	0x41
151	97	-	ù	F8	0x42
152	98	\sim	$\ddot{\text { y }}$	F9	0x43
153	99	тм	Ö	F10	0x44
154	9A	š	Ü	F11	0x57
155	9B	,	ϕ	F12	0x58
156	9C	œ	£	Numeric Keypad +	0x4E
157	9D		¥	Numeric Keypad -	0x4A
158	9E	ž	Pts	Numeric Keypad *	0x37
159	9F	\ddot{Y}	f	Caps Lock	0x3A
160	A0		á	Num Lock	0x45
161	A1	i	í	Left Alt	0x38
162	A2	¢	ó	Left Ctrl	0x1D
163	A3	$£$	ú	Left Shift	0x2A
164	A4	-	ñ	Right Shift	0x36
165	A5	$¥$	Ñ	Print Screen	n/a
166	A6	1	-	Tab	0x0F
167	A7	§	-	Shift Tab	0x8F
168	A8		i	Enter	0x1C
169	A9	©	-	Esc	0x01
170	AA		7	Alt Make	0x36
171	AB	"	1/2	Alt Break	0xB6
172	AC	ᄀ	$1 / 4$	Control Make	0x1D

Extended ASCII Characters（Continued）					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
173	AD		i	Control Break	0x9D
174	AE	®	«	Alt Sequence with 1 Character	0x36
175	AF	－	＂	Ctrl Sequence with 1 Character	0x1D
176	B0	－	\％		
177	B1	\pm	§		
178	B2	2			
179	B3	3			
180	B4	，	－1		
181	B5	μ	$=$		
182	B6	II	－		
183	B7	．	11		
184	B8		7		
185	B9	1	4		
186	BA	－	\｜		
187	BB	＂	7		
188	BC	$1 / 4$	」		
189	BD	1／2	－		
190	BE	3／4	\pm		
191	BF	¿	7		
192	C0	À	L		
193	C1	Á	\perp		
194	C2	Â	T		
195	C3	Ã	F		
196	C4	Ä	－		
197	C5	A	í		
198	C6	\ldots	F		
199	C7	Ç	IF		
200	C8	Ė	L		
201	C9	É	「		
202	CA	Ê	$\xrightarrow{\text { IL }}$		
203	CB	Ë	T		
204	CC	ì	It		
205	CD	Í	$=$		
206	CE	̂̂	苼		
207	CF	Ï	$\stackrel{1}{ \pm}$		
208	D0	Đ	－		
209	D1	Ñ	T		
210	D2	Ò	π		
211	D3	Ó	IL		

A－8

Extended ASCII Characters (Continued)					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
212	D4	Ô	t		
213	D5	Õ	F		
214	D6	Ö	π		
215	D7	\times	\#		
216	D8	\varnothing	\#		
217	D9	Ù	」		
218	DA	Ú	Γ		
219	DB	Û			
220	DC	Ü			
221	DD	Ý			
222	DE	P	-		
223	DF	B	\square		
224	E0	à	α		
225	E1	á	B		
226	E2	â	Γ		
227	E3	ã	π		
228	E4	ä	Σ		
229	E5	å	σ		
230	E6	æ	μ		
231	E7	ç	T		
232	E8	è	Ф		
233	E9	é	Θ		
234	EA	ê	Ω		
235	EB	ë	δ		
236	EC	i	∞		
237	ED	1	φ		
238	EE	î	ε		
239	EF	ï	\cap		
240	F0	ð	三		
241	F1	ñ	\pm		
242	F2	ò	\geq		
243	F3	ó	\leq		
244	F4	ô	1		
245	F5	õ	J		
246	F6	ö	\div		
247	F7	\div	\approx		
248	F8	\varnothing	-		
249	F9	ù	.		
250	FA	ú	.		

Extended ASCII Characters (Continued)						
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code	
251	FB	û	$\sqrt{c \mid}$			
252	FC	ü	n			
253	FD	y	2			
254	FE	p	■			
255	FF	\ddot{y}				

ISO 2022/ISO 646 Character Replacements

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, select the code page with which the bar codes were created. The data characters should then appear properly.

Code Page Selection Method/Country	Standard	Keyboard Country	Honeywell Code Page Option
United States (standard ASCII)	ISO/IEC 646-IRV	n /a	1
Automatic National Character Replacement	ISO/IEC 2022	n / a	2 (default)
Binary Code page	n/a	n / a	3
Default "Automatic National Character replacement" will select the below Honeywell Code Page options for Code128, Code 39 and Code 93.			
United States	ISO/IEC 646-06	0	1
Canada	ISO /IEC 646-121	54	95
Canada	ISO /IEC 646-122	18	96
Japan	ISO/IEC 646-14	28	98
China	ISO/IEC 646-57	92	99
Great Britain (UK)	ISO /IEC 646-04	7	87

Code Page Selection Method/Country	Standard	Keyboard Country	Honeywell Code Page Option
France	ISO /IEC 646-69	3	83
Germany	ISO/IEC646-21	4	84
Switzerland	ISO /IEC 646-CH	6	86
Sweden / Finland (extended Annex C)	ISO/IEC 646-11	2	82
Ireland	ISO /IEC 646-207	73	97
Danmark	ISO/IEC 646-08	8	88
Norway	ISO/IEC 646-60	9	94
Italy	ISO/IEC 646-15	5	85
Portugal	ISO/IEC 646-16	13	92
Spain	ISO/IEC 646-17	10	90
Spain	ISO/IEC 646-85	51	91

Dec			35	36	64	91	92	93	94	96	123	124	125	126
Hex			23	24	40	5B	5C	5D	5 E	60	7B	7 C	7D	7 E
US	0	1	\#	\$	@	[1]	\wedge	-	\{	1	\}	\sim
CA	54	95	\#	\$	à	â	ç	ê	$\hat{\imath}$	ô	é	ù	è	û
CA	18	96	\#	\$	à	â	ç	ê	É	ô	é	ù	è	û
JP	28	98	\#	\$	@	[$¥$]	\wedge	-	\{	\|	\}	-
CN	92	99	\#	¥	@	[1]	\wedge	-	\{	\|	\}	-
GB	7	87	£	\$	@	[1]	\wedge	-	\{	\|	\}	~
FR	3	83	£	\$	à	。	¢	§	\wedge	μ	é	ù	è	.
DE	4	84	\#	\$	§	Ä	Ö	Ü	\wedge	-	ä	ö	ü	B
CH	6	86	ù	\$	à	é	¢̧	ê	$\hat{\imath}$	ô	ä	ӧ	ü	û
SE/FI	2	82	\#	¢	É	Ä	Ö	Å	Ü	é	ä	Ö	å	ü
DK	8	88	\#	\$	@	A	\varnothing	Å	\wedge	,	æ	\varnothing	å	\sim
NO	9	94	\#	\$	@	\notin	\emptyset	Å	\wedge	,	æ	\varnothing	å	..
IE	73	97	£	\$	Ó	É	Í	Ú	Á	ó	é	í	ú	á
IT	5	85	£	\$	§	-	¢̧	é	\wedge	ù	à	ò	è	ì
PT	13	92	\#	\$	§	Ã	Ç	O	\wedge	,	ã	Ç	õ	-
ES	10	90	\#	\$	§	i	N	¿	\wedge	,	-	ñ	Ç	~
ES	51	91	\#	\$.	i	N	Ç	¿	,		ñ	¢̧	.
痛 2 0 0				I	6	N	on	Ch	rac	P	plac	men		

Unicode Key Maps

6E $70717273 \quad 74757677 \quad 78797 \mathrm{Al}$ 7B	7C 7D 7E	
010203040506070809 OA OB OC OD OF	4B 5055	5A 5F 6469
10111213141516171819 1A 1B 1C 1D	4C5156	5B 6065
1E 1F $20212223242526272829 \quad 2 \mathrm{~L}$		5C 6166
2C 2E 2F $3031323334353637 \quad 39$	53	5D 6267
$3 \mathrm{~A} 3 \mathrm{~B} 3 \mathrm{O} \quad 3 \mathrm{D} \quad 3 \mathrm{EF} 3840$	4F 5459	$6368{ }^{6 C}$

104 Key U.S. Style Keyboard

6E $70717273 \quad 74757677 \quad 7879$ 7A 7B	7C 7D 7E	
010203040506070809 OA OB OC OD OF	4B 5055	5A 5F 6469
10101213141516171819 1A 1B 1C	4C 5156	5B 60656 -
1E 1F 20212223242526272829 2A		5C 6166
2C 2D 2E 2F $3031323334353637 \times 39$	53	5D 6267
$3 \mathrm{~A} 3 \mathrm{BC} \quad 3 \mathrm{D} \quad 3 \mathrm{l} 3 \mathrm{~F} 3840$	4F 5459	6368

Sample Symbols

UPC-A

01234567890

Code 128

Code 128

Code 39

BC321

Code 93

123456-9\$

Interleaved 2 of 5

1234567890

EAN-13

9780330290951

Codabar

A13579B

Straight 2 of 5 Industrial

123456

Sample Symbols

Matrix 2 of 5

6543210

PDF417

Data Matrix

Test Symbol

4-CB (4-State Customer Bar Code)

01,234,567094,987654321,01234567891

ID-tag (UPU 4-State)
 J18CUSA8E6N062315014880T

Sample Symbols

MaxiCode

 , (O)

Test Message

Programming Chart

Programming Chart

Note: If you make an error while scanning the letters or digits (before scanning Save), scan Discard, scan the correct letters or digits, and Save again.

[^0]: EXCEPT AS MAY BE OTHERWISE PROVIDED BY APPLICABLE LAW, THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER COVENANTS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, ORAL OR WRITTEN, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT.

 YOUJIE'S RESPONSIBILITY AND PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WARRANTY IS LIMITED TO THE REPAIR OR REPLACEMENT OF THE DEFECTIVE PRODUCT WITH NEW OR REFURBISHED PARTS. IN NO EVENT SHALL Youjie BE LIABLE FOR INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, AND, IN NO EVENT, SHALL ANY LIABILITY OF Youjie ARISING IN CONNECTION WITH ANY PRODUCT SOLD HEREUNDER (WHETHER SUCH LIABILITY ARISES FROM A CLAIM BASED ON CONTRACT, WARRANTY, TORT, OR OTHERWISE) EXCEED THE ACTUAL AMOUNT PAID TO Youjie FOR THE PRODUCT. THESE LIMITATIONS ON LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT EVEN WHEN Youjie MAY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH INJURIES, LOSSES, OR DAMAGES. SOME STATES, PROVINCES, OR COUNTRIES DO

